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We present results of numerical investigations on the complex spatiotemporal dynamics of semi-
conductor laser arrays. The diffusion of charge carriers turns out to be essential for instabilities in
the output intensity above the laser threshold. Besides other bifurcations, a period doubling of a
torus is found. The Karhunen-Loeve decomposition gives the dominant modes of the spatiotemporal
dynamics of the output intensity and provides a measure of the number of spatiotemporal degrees

of freedom.

PACS number(s): 05.45.4+b, 42.50.Ne, 42.55.Px
I. INTRODUCTION

Self-organized transverse spatiotemporal patterns arise
in a variety of nonlinear optical systems, especially lasers
[1-3]. Of particular current interest are arrays of semi-
conductor injection lasers, where several laser oscillators
are combined in a single device on one substrate.

Describing the dynamics of semiconductor laser arrays
within the framework of the coupled mode theory may
reveal a number of fundamental properties [4]. For in-
stance, it predicts that the emitters of the array oscillate
collectively in modes of the composite waveguide. These
so-called supermodes have been experimentally observed
[5]. Thus in most studies on the dynamic behavior of
semiconductor laser arrays, where rate equations are used
for the electric field and the carrier density [6], the cou-
pling of the electric field of adjacent lasers is described by
a scalar coupling coefficient, and the diffusion of charge
carriers is neglected since it cannot be easily included in
the coupled mode description based on ordinary differ-
ential equations. However, it has recently been realized
that it is the combination of the dynamically and spa-
tially varying optical coupling via diffraction with the
time dependent transverse diffusion of the charge carri-
ers between the laser stripes which is responsible for a
striking complexity in the dynamics of the array [7-10].

In this paper we present results of our numerical inves-
tigations of the dynamics of transversely coupled semi-
conductor lasers on the basis of a phenomenological laser
model involving partial differential equations [7,9]. The
variation of the injection current leads to different cou-
pling situations with complex spatiotemporal dynam-
ics. We study the various dynamic regimes by analyzing
the output intensity and the charge carrier density with
methods from nonlinear dynamics. Owur investigations
extend and complement previous studies on twin-stripe
semiconductor lasers [9,11]. Here we consider three-stripe
and ten-stripe arrays. The results of our extensive nu-
merical simulations not only show interesting dynamic
bifurcation phenomena but, as we will demonstrate in
the following, also help to shed some light on the internal
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dynamic coupling mechanisms in semiconductor laser ar-
rays. In particular, by deliberately neglecting diffusion—
in direct comparison with the “normal” case where car-
rier diffusion is correctly taken into account—we qualita-
tively determine the influence which nonlinear coupling
by the transversely diffusing charge carriers have on the
dynamical behavior of the array.

We will proceed along the following line: In Sec. II
we briefly present the model under consideration. The
influence of particle diffusion on the dynamical behavior
and the bifurcations leading to chaotic oscillations of the
output intensity are described in Sec. III. In Sec. IV we
focus on the quantitative analysis of spatiotemporal pat-
terns, by means of the Karhunen-Loeve decomposition.
Finally, Sec. V summarizes our findings and draws some
conclusions.

II. THE MODEL

A typical semiconductor laser array is schematically
shown in Fig. 1. The laser structure essentially consists
of a GaAs/Al,Ga;_.As heterostructure, with GaAs be-
ing the active layer. Current is injected through the con-
tact stripes at the top of the device. The stripe width of
w = 5.0 um is chosen such that one stripe can support
one transverse optical mode. The stripes are separated
by a distance of s = 5.8 um from each other. The het-
erostructure vertically (in the y direction) confines the
charge carriers to the active layer. In the transverse (x)
direction, however, not only can the carriers freely diffuse
but also the optical field-modes of each stripe overlap,
leading to the aforementioned dynamic twofold coupling
mechanism between the individual lasers.

The model equation for the electric field F is based on
Maxwell’s wave equation in paraxial approximation. Due
to the difference in refractive indices between the layers
of GaAs and Al,Ga;_,As, the optical field is vertically
(in the y direction) confined to the active layer. As the
heterostructure is thin enough to support only one mode
in the y direction, its waveguiding properties can be de-
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FIG. 1. Setup of a three-stripe laser. The middle layer
(GaAs) of the double heterostructure is the active region. The
charge carriers are injected through the contact stripes at the
top of the device.

scribed in the steady state. By means of the effective
index approximation they can be represented as trans-
versely dependent parameters. Averaging with respect
to the longitudinal (z) direction leads to a mean field
model which depends on one dimension in space denoted
by z. Adiabatically eliminating the polarization variable,
the interaction of the electric field and the semiconduc-
tor material is phenomenologically described by a linear
gain function g(IN) = aN — b and by the linewidth en-
hancement factor . The dynamics of the charge carrier
density NNV is governed by a diffusion equation (diffusion
constant Dy) including the pump term A which models
injection of carriers, and -y, represents the nonradiative
recombination coefficient. The dynamic equations are

given by
n 0, . 0? .
- EE =1iD, szE [Ym + in(z)|E
+I'(z)[g(N) — iaaN]E, (1a)
o ? 2¢pC
N=p, 2 N_ _ 2
5N =Dy 5o = el + Als) — oot g(N)|E

(1b)

The first term on the right-hand side of Eq. (1a) de-
scribes the coupling of adjacent lasers by diffraction,
where D,, = (2n;ko) ™! is the diffraction coefficient with
vacuum wave number ko = 27w/, A being the optical
wavelength and n; the refractive index of the active layer.
Resonator losses due to the mirror transmissivity are in-
cluded in the constant v, = —In+R;R2/2L; R; and
R, are the reflectivities of the two facets and L is the
length of the laser. Passive waveguiding properties are
represented by 7(z) which results from the effective index
approximation. The variation in confinement of the ver-
tical mode profile due to the ribbed transverse structure
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is described by the confinement factor I'. The parameters
€0, ¢, and w are the absolute permittivity, vacuum veloc-
ity of light, and frequency, respectively. The pumping
term A(z) vanishes between the stripes and has a value
of n;J/(edwL) underneath the stripes with the total in-
jection current per stripe J, where e, d, and 7; are the
elementary charge, the thickness of the active layer, and
the injection efficiency, respectively.

Equations (1b) have to be supplemented by the
transverse boundary conditions dE/0x = Fa,FE and
ON/0r = Fas N at the two transverse sides, where
@, is the surface absorption constant, and a,, is the
surface recombination constant. The optical output in-
tensity at the front facet is given by I(z,t) = (1 —
Ri)eoc/ni |E(z,t)|2.

The model equations (1b) are discretized and numer-
ically solved using the hopscotch method [7]. The pa-
rameter values used in the simulations are listed in Table

I

III. BIFURCATION SCENARIOS WITH AND
WITHOUT DIFFUSION

Pumping an array of three-stripe lasers just above its
lasing threshold (with the parameters listed in Table I
we find a threshold current Ji;, = 36 mA per stripe) re-
sults in a continuous emission of light: the lasers are not
coupled and reach a steady state [Fig. 2(a)] after a few
relaxation oscillations. Increased injection current causes
stronger coupling of the fields and leads to self-sustained
relaxation oscillations with typical frequencies of a few
GHz. These oscillations may be periodic [Fig. 2(b)] or
quasiperiodic with two [Fig. 2(c)] or more [11] incom-
mensurate frequencies. Further increase of the pump-

TABLE I. Semiconductor laser parameters.

L =250pm Cavity length
w =5.0pum Stripe width
s =58um Stripe separation
for the three-stripe laser
s =50pum Stripe separation

for the ten-stripe laser

d =0.15pum Thickness of active layer

R; =0.99 Reflectivity of first mirror

Ry =0.32 Reflectivity of second mirror

A =815nm Laser wavelength

n; = 0.59 Refractive index of active layer
n. = 0.32 Refractive index of cladding layer
a =15x10""% cm? Linear gain coefficient

b = —1.0x10°cm™" Linear loss coefficient

Diffraction coefficient
Diffusion coefficient
Nonradiative recombination
coefficient

D, =18 x107%*m
Dj =30cm?s™?
Yor =2 x 108571

I' =0.5014 Confinement factor below stripes
= 0.5149 Confinement factor between stripes
ni =0.5 Efficiency of injection

ayp =30cm™!

agr = 108 cms™

Surface absorption constant

1 Surface recombination constant
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FIG. 2. Gray scale plot of the spatiotemporal output inten-
sity of the three-stripe laser array for four different injection
currents J. Bright colors represent high intensity values, dark
shading indicates low intensity. (a) J = 40.8 mA: continuous
wave, (b) J = 44.6 mA: periodic, (c¢) J = 50.0 mA: quasiperi-
odic (two-torus), (d) J = 60.0 mA: chaotic.

ing strength enhances the already strong coupling of the
lasers even more and results in a chaotically pulsating
spatiotemporal intensity distribution [Fig. 2(d)]. The
plots in Fig. 3 showing time trace cuts of the spatiotem-
poral distribution again pertain to these situations. The
time series of the output intensity I in the center of
the middle stripe in Fig. 3(a) is periodic, whereas it is
quasiperiodic in Fig. 3(b) and chaotic in Fig. 3(c). The
power spectra of the time series reveal the various fre-
quencies involved, and support the strong broad-band
irregularity of the optical signal as shown in Fig. 3(c).
In the following we will use the logarithmic power spec-
tra of the intensity of the middle laser stripe to identify
the various regimes involved in the dynamics of the three-
stripe laser. Using spectral analysis the bifurcations upon
variation of the injection current J are comprehensively
visualized in Fig. 4. This figure presents the results of
extensive numerical simulations by giving an overview of
the frequencies excited in the temporal variation of the
output intensity. Logarithmic power spectra of the inten-
sity of the middle laser stripe are graphically shown in the
form of a density plot versus the injection current. Figure
4(a) is attained with the diffusion coefficient having the
realistic value of Dy = 30 cm?/s, whereas in the corre-
sponding simulations pertaining to Fig. 4(b) the diffusion
coefficient has been reduced by 6 orders of magnitude to
Dj = 3 x 1075 cm?/s. Generally, we identify discrete
power spectra for the periodic and quasiperiodic regimes.
For time series showing chaotic dynamical behavior, the
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FIG. 3. Time series of the output intensity in the cen-
ter of the middle stripe. (a) J = 44.6mA: periodic, (b)
J = 50.0 mA: quasiperiodic, (c) J = 60.0mA: chaotic.

power spectra are quasicontinuous. The direct compari-
son of Fig. 4(a) with Fig. 4(b) gives a clear indication of
the importance of diffusive coupling effects. In fact, in a
large regime of physically relevant values of the pumping
strength an imaginary diffusionless three-stripe semicon-
ductor laser array would oscillate in a stable mode. This
is in striking contrast to the realistic laser array where
instabilities appear. Evidently carrier diffusion is a fun-
damental mechanism involved in the emergence of insta-
bilities in semiconductor lasers arrays. Therefore, trans-
verse diffusion should clearly not be neglected as opposed
to many common theoretical and numerical studies.
Zooming in on a particularly interesting part of Fig.
4(a), we now focus on the bifurcations leading from the
fixed point just above the laser threshold to the chaot-
ically pulsating intensity. In Fig. 5(a) a blow-up of the
relevant region in Fig. 4 is shown, revealing a considerable
substructure in the bifurcations. The first Hopf bifurca-
tion occurs at a pumping strength of J = 41 mA, which
is 1.14 times the laser threshold. A secondary Hopf bi-
furcation is found around J = 45 mA which corresponds
to 1.25 times the threshold current. The output inten-
sity becomes quasiperiodic with two incommensurate fre-
quencies. After further bifurcations the dynamics turns
to chaotic behavior above J = 52mA. As shown in Figs.
5(b)—(e) these bifurcations are associated with changes
of mean values and standard deviations of the intensity.
At the secondary Hopf bifurcation not only is a new fre-
quency being introduced but at the same time the oscil-
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FIG. 4. Frequency bifurcation diagrams. The logarithmic
power spectra are shown as a density plot vs the injection
current J per stripe. Dark color corresponds to high ampli-
tudes. (a) With correct diffusion coefficient Dy = 30 cm?/s,
(b) With reduced diffusion coefficient Dy = 3 x 1075 cm?/s.
For each value of J the power spectrum is calculated for the
time interval from ¢ = 38.6-100 ns corresponding to 8192 data
points.

lation strength is changed considerably. This can be seen
in Fig. 6 showing the time series of the output intensity
at the centers of the three laser stripes excited just above
the second Hopf bifurcation. At this point, the limit cy-
cle has lost its stability and a torus is approached after
a long transient. Note that due to diffusion of carriers
into the absorbing edges of the array the output inten-
sity of the middle stripe is higher than the corresponding
values of the left or the right stripe. For the limit cy-
cle regime, the oscillation strength of the left and right
stripes is considerably less than that of the middle one.
With the occurrence of the second frequency the oscil-
lation strength of the left and right stripes increases to
the order of the oscillation strength of the middle stripe,
whereas the variance of intensity of the middle stripe
is slightly reduced. These changes can be seen in Figs.
5(b)-5(e) which show the time average and the standard
deviation of the middle laser stripe. The mean value
(temporal average) of the output intensity in the center
of the middle laser stripe displayed in Fig. 5(b) reflects—
by its linear dependence on the pumping current J above
the threshold Ji;, = 36 mA—the linear approximation in
the semiconductor gain function, where, e.g., saturation
effects at high pumping levels are disregarded. However,
when plotting the ratio of the temporal mean of the inten-
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FIG. 5. (a) Blow-up of the frequency bifurcation diagram
of Fig. 4(a). (b) Temporal average of the intensity in the
center of the middle stripe in MW/cm?, (c) temporal aver-
age normalized to the total intensity (averaged in time and
space), (d) standard deviation of the intensity in the center of
the middle stripe in MW/cm?, (e) standard deviation of the
intensity in the center of the middle laser stripe normalized to
the standard deviation of the transversely averaged intensity.

sity in the center of the middle stripe to the total intensity
(averaged with respect to time and space) in Fig. 5(c), we
observe a decrease of this ratio with increasing injection
current, but more importantly, a distinct jump at the
first Hopf bifurcation point. This tendency is even more
highlighted in Fig. 5(d) showing the standard deviation
of the output intensity of the middle stripe. Clearly, the
two jumps observed in Fig. 5(d) indicate the first and the
second Hopf bifurcation. Finally, in Fig. 5(e) the stan-
dard deviation of the output intensity of the center of
the middle stripe normalized to the standard deviation
of the transversely averaged output intensity is shown.
The two Hopf bifurcations and the bifurcation to chaotic
dynamics are clearly visible.

In our view, these sudden changes already are indi-
cations of a more complex dynamical behavior involv-
ing spatially distributed coupling between the stripes.
However, before engaging on a closer analysis of the spa-
tiotemporal correlations in Sec. IV, we will concentrate
on the bifurcations in the intensity leading from the torus
to chaotic dynamical behavior.

Inspection of Fig. 5(a) reveals the appearance of addi-
tional spectral peaks near the transition to chaos. Among
the different routes to chaos (see [12] for a recent review)
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FIG. 6. A transient time series of the output intensity in
the center of the respective stripe near the second Hopf bifur-
cation (J=44.92 mA). The stability of the limit cycle is lost,
leading to a stable torus. (a) Left stripe, (b) middle stripe,
(c) right stripe.

the period doubling of a torus attracted much attention
during the past decade [13-16]. Theoretical considera-
tions predict that in contrast to the period-doubling cas-
cade of a limit cycle the torus-doubling cascade is dis-
rupted after a few steps [17]. The subharmonics around
52mA in Fig. 5(a) are a first indication of a torus dou-
bling. In Fig. 7 next-maximum maps are used to resolve
details of the transition. The closed curve in Fig. 7(a) re-
veals a torus with two incommensurate frequencies at an
injection current of J = 50.8 mA. Increasing the pumping
strength leads to a bifurcation of the torus. Torus dou-
bling can be seen at a pumping strength of J = 51.4 mA,

(a) (c)

(b)

I, (arb. units)

I,-1 (arb. units)

FIG. 7. Next-maximum maps of the intensity time series
near the period doubling of the torus. The maxima of the
intensity in the center of the middle stripe I, are plotted
versus In_i1. (a) Torus, J = 50.8mA, (b) doubled torus,
J = 51.4mA, (c) wrinkled torus, J = 52.0mA, (d) destroyed
torus, J = 52.6 mA.

with the points of the next-maximum map in Fig. 7(b)
still arranged on a closed curve. With further increase
of the injection current the period-doubled torus loses its
smoothness [Fig. 7(c)] and results in chaotic dynamics
of the output intensity [Fig. 7(d)]. The observation of
just a single doubling bifurcation and subsequent loss of
smoothness is consistent with numerical and theoretical
studies [18,12].

IV. SPATIOTEMPORAL COMPLEXITY

Looking at the density plots of the intensity distribu-
tion in Fig. 2, our visual perception suggests—by the
complexity of the patterns—that temporal and spatial
degrees of freedom are simultaneously excited and seem
to be intrinsically coupled. Also, when comparing the
intensities of the three laser stripes in the preceding sec-
tion, we found indications of a simultaneous temporal
and spatial variation of the coupling between the stripes.
In the following, by applying the Karhunen-Loeve de-
composition [19-21] to our computed data, we are able
to quantify the spatiotemporal complexity. With the help
of this analysis a few relevant spatial “patterns” can be
extracted and we will use these eigenmodes as basis func-
tions to separate the spatial and temporal dynamics [22].

Let u(z,t) be the quantity under consideration; then
the Karhunen-Loeve expansion (or proper orthogonal de-
composition)

up(z,t) = Z a;(t) ¢i(x) (2)

=1

yields a good approximation to u(z,t) in the sense of a
minimal mean squared error for a given number M. The
spatial functions ¢;(z) are called eigenmodes, whereas
the temporal functions a;(t) are the amplitudes of the
corresponding modes. The first eigenmode which fits best
is determined by solving the variational problem

T
A = r%ilx {limT_)oo% [) ((151,u)2 dt} (3)

with (.,.) being a scalar product with respect to space.
The other eigenmodes are determined analogously taking
into account orthogonality and normalization [19]. This
variational problem is equivalent to the eigenvalue prob-
lem for the covariance matrix

1 [to+T
Cuui=g [ wantiu(ent)dr ()
to

expressed in terms of the discretized transverse coordi-
nate x.

The eigenvalues A; corresponding to the eigenmodes
¢; of the covariance matrix are equal to the variance of
the ith mode amplitude {a;(t))? and therefore a measure
of the strength of the modes involved in the dynamics.
When comparing these eigenvalues it is advantageous to
introduce relative eigenvalues normalized to the sum of
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all eigenvalues

Xi = E/\'ikj' (5)

To analyze the dynamics of the semiconductor laser it
is appropriate to choose

UI(:L‘,t) = I(.’E,t) _ (I(.’E))

T@) (62)

and
N(z,t) — (N(=))
(N(z))

as spatiotemporal quantities under consideration, where
() denotes the temporal average [22].

Figure 8 shows the eigenmodes of uf(z,t) correspond-
ing to the time series in Fig. 3. The numbers indicate the
relative eigenvalues A;. Obviously, periodic oscillations in
time [Fig. 3(a)] are governed by only one dominant spa-
tial mode which describes the alternating “firing” of ad-
jacent laser stripes [Fig. 8(a)]. The left and right stripes
oscillate in phase, while the intensity of the middle stripe
lags by half a period. The quasiperiodic oscillations [Fig.
3(b)] are related to two relevant eigenmodes; the first
mode of the periodic regime now has become the second
one, whereas the new first mode describes the alternat-
ing oscillations of the left and right stripe, however not
affecting the middle stripe [Fig. 8(b)]. Looking at the
chaotic regime [Fig. 3(c)], a third transverse mode is ex-
cited, describing the simultaneous in-phase oscillation of
all stripes [Fig. 3(c)]. (It should be noted that all modes
describe the deviation of the intensity field from the time
average.) Analogous to Fig. 8, Fig. 9 shows the eigen-
modes of the charge carrier density. Those modes differ
from the intensity modes by the fact that they are more
confined to the region under the current injection stripes.

ul¥(z,t) = (6b)

(¢}

(2)

normalized intensity (arb. units)

3)

5§<;<

FIG. 8. Eigenmodes of the intensity field I(z,t). For three
different injection currents (cf. Fig. 3) the first three eigen-
modes ¢i(z), ¢ = 1,2, 3 are shown, the numbers denoting their
respective eigenvalues A;. Relevant modes are depicted by
solid lines, very weak modes by dashed lines. (a) J = 44.6 mA:
periodic dynamics, (b) J = 50.0.mA: quasiperiodic dynamics,
(c¢) J = 60.0mA: chaotic dynamics.
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FIG. 9. Eigenmodes of the carrier density field N(z,t),
same plot as in Fig. 8.

The confinement is strongly influenced by the diffusion
coefficient.

Figure 10 shows the output intensity of a laser array
with ten elements for two different injection currents. In
Fig. 10(a) the dynamics is periodic whereas in Fig. 10(b)
it is chaotic. The corresponding eigenmodes are shown
in Figs. 11 and 12. The periodic time series can be de-
scribed by two eigenmodes containing 98% of the vari-
ance. The first mode in the periodic regime (Fig. 11)
describes a modulation of the output of the ten neigh-
boring stripes with a sinusoidal envelope of one period
across the transverse direction, whereas the second mode
corresponds to such a modulation with 3/2 periods. In a
sense those envelopes are equivalent to the two dominant
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FIG. 10. Gray scale plot of the spatiotemporal output in-
tensity of a ten-stripe laser array for two different injection
currents. (a) J = 34 mA: periodic, (b) J = 44 mA: chaotic.
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FIG. 11. Relevant eigenmodes ¢;(z) of the ten-stripe laser
array for the periodic regime (J = 34mA). (a) eigenmodes of
the intensity field, (b) eigenmodes of the carrier density field.

eigenmodes in Figs. 8(b) and 9(b). The chaotic time se-
ries, on the other hand, requires ten modes for a correct
description (they cover 97% of the variance), indicating
much more complicated dynamics due to the excitation
of higher spatial modes.

This can be verified in Fig. 13 where the absolute eigen-
values \; are shown for several injection currents, indicat-
ing the successive excitation of new modes with increased
pumping strength leading from periodic oscillations to
spatiotemporal chaotic dynamics. Note that even at high
pumping, the number of relevant eigenmodes does not ex-
ceed 10, i.e., the number of laser stripes; such behavior
is not self-evident in a spatiotemporal system.

V. CONCLUSIONS

We studied the spatiotemporal dynamics of semicon-
ductor laser arrays based on a description in terms of
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FIG. 12. Relevant eigenmodes ¢;(x) of the ten-stripe laser
array for the chaotic regime (J = 44 mA). (a) Eigenmodes of
the intensity field, (b) eigenmodes of the carrier density field.

eigenvalue (arb. units)
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12 345 607 8 9101112 12 3 4 5 67 8 9101112
mode number

FIG. 13. Eigenvalues A; of the first 12 eigenmodes of
the ten-stripe laser array for injection currents from (1)
J = 34mA to (7) J = 58mA in steps of 4mA. (a) Inten-
sity eigenmodes, (b) carrier density eigenmodes.

partial differential equations, and have identified vari-
ous dynamical regimes. Particularly, a 2-torus is sta-
ble in a wide range of parameters. At large pumping
irregular spatiotemporal patterns are found. Near the
transition to the chaotic regime a period doubling of a
torus is found, revealed clearly by spectral bifurcation
diagrams and next-maximum maps. More quantitative
insight into the spatiotemporal patterns is gained by the
Karhunen-Loeve decomposition. Although there are po-
tentially thousands of degrees of freedom in a spatially
extended system like the semiconductor laser, even in the
strongly irregular regime of the ten-stripe laser only 10
spatial modes contain more than 97% of the dynamics as
measured by the corresponding eigenvalues.

Finally, our study puts strong emphasis on the role
of the charge carrier diffusion as an important coupling
mechanism in addition to the overlapping of evanescent
fields. It strongly influences the dynamical behavior and
induces instabilities as shown by comparison with ne-
glected diffusion.
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FIG. 10. Gray scale plot of the spatiotemporal output in-
tensity of a ten-stripe laser array for two different injection
currents. (a) J = 34 mA: periodic, (b) J = 44mA: chaotic.
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FIG. 2. Gray scale plot of the spatiotemporal output inten-
sity of the three-stripe laser array for four different injection
currents J. Bright colors represent high intensity values, dark
shading indicates low intensity. (a) J = 40.8 mA: continuous
wave, (b) J = 44.6 mA: periodic, (c) J = 50.0 mA: quasiperi-
odic (two-torus), (d) J = 60.0 mA: chaotic.



FIG. 4. Frequency bifurcation diagrams. The logarithmic
power spectra are shown as a density plot vs the injection
current J per stripe. Dark color corresponds to high ampli-
tudes. (a) With correct diffusion coefficient Dy = 30 cm?/s,
(b) With reduced diffusion coefficient Dy = 3 x 107° cm?/s.
For each value of J the power spectrum is calculated for the
time interval from ¢ = 38.6-100 ns corresponding to 8192 data
points.
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FIG. 5. (a) Blow-up of the frequency bifurcation diagram
of Fig. 4(a). (b) Temporal average of the intensity in the
center of the middle stripe in MW /cm?, (c) temporal aver-
age normalized to the total intensity (averaged in time and
space), (d) standard deviation of the intensity in the center of
the middle stripe in MW/em?, (e) standard deviation of the
intensity in the center of the middle laser stripe normalized to
the standard deviation of the transversely averaged intensity.



